Laundry Machines and Chemicals
In the nineteenth century, American home economist Catherine Beecher described laundry as the “housekeeper’s hardest problem.’’ Thousands of patents for washing machines attested to the tedium of ‘‘blue Monday,’’ as the day commonly allocated to that task was known. The task involved hauling, boiling, and pouring hundreds of gallons of water, exposure to caustic chemicals, and rubbing, pounding, wringing, and lifting the heavy, wet linens and clothing.
The automation of washing and drying machines in the twentieth century and improvements in detergents resulted in a considerable reduction in the intensity of labor required for this task. At the same time, historians of technology claim that rising standards of cleanliness and the cultural turn away from commercial laundry and domestic laundresses ensured that time spent in domestic laundering remained significant.
Laundry technology never fully eliminated human effort, even in Western countries, where a person was still required to gather, sort, load, unload, fold, and iron the laundry. In less developed countries, many women continued to perform the full range of laundering tasks without machines at the end of the twentieth century.
Washing Machines. Sir John Hoskins’ first British patent for a washing machine dates to 1677, and the first American patent of 1805 reflects early work on industrial machines. The British and French textile industries’ use of washing machines in the bleaching process was noted in the Grande Encyclopedie of 1780. In fact, until the twentieth century when laundering was individualized and permanently allocated to the home, innovations in washing machines were developed principally for large commercial laundries.
American James T. King’s industrial cylinder washing machine of 1851 incorporated technological principles that would be applied in twentieth century automated industrial and domestic washing machines. It consisted of an outer, fixed cylinder and an inner, perforated rotating cylinder. A coal or wood fire under the outer cylinder heated soapy water that circulated through the clothes contained in the inner cylinder, which revolved by huge belts attached to an industrial steam engine.
Other machines, such as Montgomery Ward’s ‘‘Old Faithful’’ of 1927 produced well into the twentieth century, imitated the motion of the human hand rubbing against a ribbed washboard. Hand wringing to remove excess water was replaced with a hand-cranked and later electric wringer that appeared on washing machines such as the Westinghouse A4TP-2 as late as the 1960s.
By 1900, semi-automated washing machines followed two designs that would be refined and improved over the next century. In the first configuration, an exterior cylindrical shell contained a perforated inner cylindrical shell that held the clothing and rotated on a horizontal axis. In the second vertical arrangement, an outer cylinder contained an inner, perforated cylinder, or basket, in which an agitator or gyrator moved the clothing through water. The cylindrical tubs could be made of wood, copper, cast iron, and later porcelain. Later in the century, the inner shells of both designs would be configured to spin their contents at high speed in order to expel most of the water after the wash cycle was complete.
By 1939, washing machines that could agitate clothing, pipe water in and out of their tubs, and spin-dry at speed- were being marketed directly and most heavily to women. Several technological and cultural developments necessarily preceded the post-World War II mass consumption of these machines in North America and Western Europe.
The electric motor, available from around the turn of the century, was initially installed in washing machines in a form that exposed users to electric shocks. It made hand cranking obsolete, although by no means in the short term. Electrical appliances in general could not become widely popular until a significant proportion of households had current delivered through an electrical network.
Electrical grids by which electrical current was distributed across wide geographic areas were set up in Britain by 1926 and over a decade earlier in the U.S. Fully plumbed houses and access to piped hot water did not become the norm until after the middle of the twentieth century. Little wonder then, that a British market study of 1945 found that washing boards, dollies (hand agitators), and wringers were among the staple laundry technologies in British homes at that time.
Laundry technologies were refined at the end of the twentieth century in response to popular interest in energy conservation and environmental issues. ‘‘Smart’’ or fuzzy logic technologies emerged from Japan in the 1980s and were subsequently applied to major appliances, including washing machines. These technologies involved sensors that anticipated the fabric type, the turbidity (soil level), and even the hardness of the water. Total washing time, power and water level, the amount of detergent, and the number of rinses could be regulated in the most economical manner. An example of a fuzzy rule might be: if the wash is very dirty and the dirt has a muddy quality, increase the wash time.
Chemicals. By the turn of the century, soap had become the most widespread among many chemicals used for laundering. Other products commonly used well into the century included lye, salt soda, lime, borax, and even urine and manure. Soap is made by combining animal fats or vegetable oils (glycerides) and alkalis such as sodium or potassium (once derived from ashes). Its discovery is thought to date back to Roman times.
Until the twentieth century, when soap flakes and powders were introduced to the market, soaps manufactured for laundry were sold in bar or tablet form and had to be cut up or flaked by the consumer. In 1918 the British manufacturer Lever Brothers began marketing Rinso, the first granulated general laundry soap. In all these cases, the reaction between the magnesium and calcium content in hard water and soap left residual scum and was a less than satisfactory cleanser, especially in light of the rise in standards of cleanliness.
Manufacturers responded by developing synthetic cleaning agents based on two-part molecules they called synthetic surfactants. The results of research at the U.S. company Proctor & Gamble were the products Dreft, followed in 1946 by Tide, which set a new standard for laundry detergents. In the final decades of the twentieth century, in response to consumer concern over the environmental impact of synthetic detergents, manufacturers developed biological and biodegradable detergents.
In the former, enzymes work on biological stains. Biodegradable detergents were designed so they would not resist the biological products used to purify sewage, as had synthetic surfactants and phosphates. It was hoped that this would avoid the release of foam into rivers, which has not proven to be the case.
Among the last major innovations of the twentieth century in laundering were ‘‘detergentless’’ washing machines. Korean electronics company Daewoo’s Midas model and others like it were designed to use an electrolysis device that filters a number components out of tap water to produce ionized water that would clean the clothes.
Date added: 2023-11-02; views: 212;